Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833870

RESUMO

Pigmentary glaucoma has recently been associated with missense mutations in PMEL that are dominantly inherited and enriched in the protein's fascinating repeat domain. PMEL pathobiology is intriguing because PMEL forms functional amyloid in healthy eyes, and this PMEL amyloid acts to scaffold melanin deposition. This is an informative contradistinction to prominent neurodegenerative diseases where amyloid formation is neurotoxic and mutations cause a toxic gain of function called "amyloidosis". Preclinical animal models have failed to model this PMEL "dysamyloidosis" pathomechanism and instead cause recessively inherited ocular pigment defects via PMEL loss of function; they have not addressed the consequences of disrupting PMEL's repetitive region. Here, we use CRISPR to engineer a small in-frame mutation in the zebrafish homolog of PMEL that is predicted to subtly disrupt the protein's repetitive region. Homozygous mutant larvae displayed pigmentation phenotypes and altered eye morphogenesis similar to presumptive null larvae. Heterozygous mutants had disrupted eye morphogenesis and disrupted pigment deposition in their retinal melanosomes. The deficits in the pigment deposition of these young adult fish were not accompanied by any detectable glaucomatous changes in intraocular pressure or retinal morphology. Overall, the data provide important in vivo validation that subtle PMEL mutations can cause a dominantly inherited pigment pathology that aligns with the inheritance of pigmentary glaucoma patient pedigrees. These in vivo observations help to resolve controversy regarding the necessity of PMEL's repeat domain in pigmentation. The data foster an ongoing interest in an antithetical dysamyloidosis mechanism that, akin to the amyloidosis of devastating dementias, manifests as a slow progressive neurodegenerative disease.


Assuntos
Glaucoma de Ângulo Aberto , Doenças Neurodegenerativas , Animais , Humanos , Adulto Jovem , Amiloide/metabolismo , Olho/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Antígeno gp100 de Melanoma/genética , Melanossomas/genética , Melanossomas/metabolismo , Doenças Neurodegenerativas/metabolismo , Peixe-Zebra
2.
FEBS J ; 290(22): 5373-5394, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552474

RESUMO

Premelanosome protein (PMEL), a melanocyte-specific glycoprotein, has an essential role in melanosome maturation, assembling amyloid fibrils for melanin deposition. PMEL undergoes several post-translational modifications, including N- and O-glycosylations, which are associated with proper melanosome development. C-mannosylation is a rare type of protein glycosylation at a tryptophan residue that might regulate the secretion and localization of proteins. PMEL has one putative C-mannosylation site in its core amyloid fragment (CAF); however, there is no report focusing on C-mannosylation of PMEL. To investigate this, we expressed recombinant PMEL in SK-MEL-28 human melanoma cells and purified the protein. Mass spectrometry analyses demonstrated that human PMEL is C-mannosylated at multiple tryptophan residues in its CAF and N-terminal fragment (NTF). In addition to the W153 or W156 residue (CAF), which lies in the consensus sequence for C-mannosylation, the W104 residue (NTF) was C-mannosylated without the consensus sequence. To determine the effects of the modifications, we deleted the PMEL gene by using CRISPR/Cas9 technology and re-expressed wild-type or C-mannosylation-defective mutants of PMEL, in which the C-mannosylated tryptophan was replaced with a phenylalanine residue (WF mutation), in SK-MEL-28 cells. Importantly, fibril-containing melanosomes were significantly decreased in W104F mutant PMEL-re-expressing cells compared with wild-type PMEL, observed using transmission electron microscopy. Furthermore, western blot and immunofluorescence analysis suggested that the W104F mutation may cause mild endoplasmic reticulumretention, possibly associated with early misfolding, and lysosomal misaggregation, thus reducing functional fibril formation. Our results demonstrate that C-mannosylation of PMEL is required for proper melanosome development by regulating PMEL-derived fibril formation.


Assuntos
Amiloide , Triptofano , Humanos , Glicosilação , Triptofano/genética , Triptofano/metabolismo , Amiloide/química , Melanossomas/genética , Melanossomas/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas Amiloidogênicas/metabolismo , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/química , Antígeno gp100 de Melanoma/metabolismo
3.
Dokl Biochem Biophys ; 513(Suppl 1): S12-S17, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38189891

RESUMO

In mammals, the main contribution to the variability of pigmentation is made by two groups of genes directly related to the metabolic pathways of pigment synthesis and controlling the transport of melanosomes in melanocytes to keratinocytes. In order to identify the genetic basis of pigmentation variants, the nucleotide sequences of the melanophilin gene were compared in two groups of ferrets-silver-colored and wild-type animals-using sequencing of 16 exons. In carriers of silver color, a single nucleotide deletion was detected in the 9th exon, leading to a shift in the reading frame and the formation of a stop codon downstream. The protein encoded by the mutant allele is almost completely devoid of the C terminal domain of the protein responsible for the contact of melanosomes with actin during their moving to the periphery of melanocytes, but it retains the leading domain involved in the formation of melanosomes. The combination of the preservation of the N domain and the defect of the C domain of the mutant protein for the first time makes it possible to explain the incomplete dominance of the wild-type protein in heterozygotes.


Assuntos
Furões , Prata , Animais , Furões/genética , Prata/metabolismo , Melanócitos/metabolismo , Melanossomas/genética , Melanossomas/metabolismo , Éxons
4.
J Biol Chem ; 298(12): 102669, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334630

RESUMO

Mutations in C10orf11 (oculocutaneous albinism type 7 [OCA7]) cause OCA, a disorder that presents with hypopigmentation in skin, eyes, and hair. The OCA7 pathophysiology is unknown, and there is virtually no information on the OCA7 protein and its cellular function. Here, we discover that OCA7 localizes to the limiting membrane of melanosomes, the specialized pigment cell organelles where melanin is synthesized. We demonstrate that OCA7 is recruited through interaction with a canonical effector-binding surface of melanosome proteins Rab32 and Rab38. Using newly generated OCA7-KO MNT1 cells, we show OCA7 regulates overall melanin levels in a melanocyte autonomous manner by controlling melanosome maturation. Importantly, we found that OCA7 regulates premelanosome protein (PMEL) processing, impacting fibrillation and the striations that define transition from melanosome stage I to stage II. Furthermore, the melanosome lumen of OCA7-KO cells displays lower pH than control cells. Together, our results reveal that OCA7 regulates pigmentation through two well-established determinants of melanosome biogenesis and function, PMEL processing, and organelle pH.


Assuntos
Melanossomas , Proteínas de Membrana , Melaninas/metabolismo , Melanócitos/metabolismo , Melanossomas/genética , Melanossomas/metabolismo , Proteínas de Membrana/metabolismo , Pigmentação/genética , Humanos
5.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205035

RESUMO

Hyperpigmentation is a dermatological condition characterized by the overaccumulation and/or oversecretion of melanin pigment. The efficacy of curcumin as an anti-melanogenic therapeutic has been recognized, but the poor stability and solubility that have limited its use have inspired the synthesis of novel curcumin analogs. We have previously reported on comparisons of the anti-melanogenic activity of four novel chemically modified curcumin (CMC) analogs, CMC2.14, CMC2.5, CMC2.23 and CMC2.24, with that of parent curcumin (PC), using a B16F10 mouse melanoma cell model, and we have investigated mechanisms of inhibition. In the current study, we have extended our findings using normal human melanocytes from a darkly pigmented donor (HEMn-DP) and we have begun to study aspects of melanosome export to human keratinocytes. Our results showed that all the CMCs downregulated the protein levels of melanogenic paracrine mediators, endothelin-1 (ET-1) and adrenomedullin (ADM) in HaCaT cells and suppressed the phagocytosis of FluoSphere beads that are considered to be melanosome mimics. All the three CMCs were similarly potent (except CMC2.14, which was highly cytotoxic) in inhibiting melanin production; furthermore, they suppressed dendricity in HEMn-DP cells. CMC2.24 and CMC2.23 robustly suppressed cellular tyrosinase activity but did not alter tyrosinase protein levels, while CMC2.5 did not suppress tyrosinase activity but significantly downregulated tyrosinase protein levels, indicative of a distinctive mode of action for the two structurally related CMCs. Moreover, HEMn-DP cells treated with CMC2.24 or CMC2.23 partially recovered their suppressed tyrosinase activity after cessation of the treatment. All the three CMCs were nontoxic to human dermal fibroblasts while PC was highly cytotoxic. Our results provide a proof-of-principle for the novel use of the CMCs for skin depigmentation, since at low concentrations, ranging from 5 to 25 µM, the CMCs (CMC2.24, CMC2.23 and CMC2.5) were more potent anti-melanogenic agents than PC and tetrahydrocurcumin (THC), both of which were ineffective at melanogenesis at similar doses, as tested in HEMn-DP cells (with PC being highly toxic in dermal fibroblasts and keratinocytes). Further studies to evaluate the efficacy of CMCs in human skin tissue and in vivo studies are warranted.


Assuntos
Curcumina/farmacologia , Hiperpigmentação/tratamento farmacológico , Melaninas/biossíntese , Melanoma Experimental/tratamento farmacológico , Adrenomedulina/genética , Animais , Curcumina/análogos & derivados , Curcumina/química , Endotelina-1/genética , Humanos , Hiperpigmentação/metabolismo , Hiperpigmentação/patologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Melaninas/antagonistas & inibidores , Melanócitos/efeitos dos fármacos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanossomas/efeitos dos fármacos , Melanossomas/genética , Camundongos , Fagocitose/genética , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia
6.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802228

RESUMO

The biosynthesis pathway of melanin is a series of oxidative reactions that are catalyzed by melanin-related proteins, including tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Reagents or materials with antioxidative or free radical-scavenging activities may be candidates for anti-melanogenesis. 3,4-Dihydroxybenzalacetone (DBL) is a polyphenol isolated from fungi, such as Phellinus obliguus (Persoon) Pilat and P. linteus. In this study, we investigated the effects and mechanisms of DBL on antioxidation and melanogenesis in murine melanoma cells (B16F10) and human epidermal melanocytes (HEMs). The results indicated that DBL scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals, and exhibited potent reducing power, indicating that it displays strong antioxidative activity. DBL also inhibited the expression of TYR, TRP-1, TRP-2, and microphthalmia-related transcription factor (MITF) in both the cells. In addition, DBL inhibited hyperpigmentation in B16F10 and HEMs by regulating the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3 beta (GSK3ß), and mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinase (ERK) signaling pathways. DBL not only shortened dendritic melanocytes but also inhibited premelanosome protein 17 (PMEL17) expression, slowing down the maturation of melanosome transportation. These results indicated that DBL promotes anti-melanogenesis by inhibiting the transportation of melanosomes. Therefore, DBL is a potent antioxidant and depigmenting agent that may be used in whitening cosmetics.


Assuntos
Ácidos Cafeicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Epiderme/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanócitos/metabolismo , Melanossomas/metabolismo , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/genética , Melanossomas/genética
7.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33886957

RESUMO

Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1-dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3-BLOC-1 super-complex.


Assuntos
Complexo 3 de Proteínas Adaptadoras/genética , Subunidades delta do Complexo de Proteínas Adaptadoras/genética , Proteínas do Tecido Nervoso/genética , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/genética , Endossomos/genética , Humanos , Melanócitos/metabolismo , Melanossomas/genética , Transporte Proteico/genética
8.
Oncogene ; 40(10): 1792-1805, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33564068

RESUMO

Cutaneous melanoma tumors are heterogeneous and show diverse responses to treatment. Identification of robust molecular biomarkers for classifying melanoma tumors into clinically distinct and homogenous subtypes is crucial for improving the diagnosis and treatment of the disease. In this study, we present a classification of melanoma tumors into four subtypes with different survival profiles based on three distinct gene expression signatures: keratin, immune, and melanogenesis. The melanogenesis expression pattern includes several genes that are characteristic of the melanosome organelle and correlates with worse survival, suggesting the involvement of melanosomes in melanoma aggression. We experimentally validated the secretion of melanosomes into surrounding tissues by melanoma tumors, which potentially affects the lethality of metastasis. We propose a simple molecular decision tree classifier for predicting a tumor's subtype based on representative genes from the three identified signatures. Key predictor genes were experimentally validated on melanoma samples taken from patients with varying survival outcomes. Our three-pattern approach for classifying melanoma tumors can contribute to advancing the understanding of melanoma variability and promote accurate diagnosis, prognostication, and treatment.


Assuntos
Imunidade/genética , Melaninas/genética , Melanoma/genética , Proteínas de Neoplasias/genética , Carcinogênese/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Calicreínas/genética , Masculino , Melaninas/biossíntese , Melanoma/classificação , Melanoma/patologia , Melanossomas/genética , Melanossomas/patologia , Proteínas Musculares/genética , Metástase Neoplásica/genética , RNA-Seq , Receptores Imunológicos/genética , Análise de Sobrevida , Transcriptoma/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
9.
J Mol Biol ; 432(23): 6173-6186, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33068637

RESUMO

Hofmeister ions are thought to play fundamentally important roles in protein solubility, folding, stability, and function. Salt ions profoundly influence the course of protein misfolding, aggregation, and amyloid formation associated with devastating human diseases. However, the molecular origin of the salt-effect in protein aggregation remains elusive. Here, we report an unusual biphasic amyloidogenesis of a pH-responsive, intrinsically disordered, oligopeptide repeat domain of a melanosomal protein, Pmel17, that regulates the amyloid-assisted melanin synthesis in mammals via functional amyloid formation. We demonstrate that a symphony of molecular events involving charge-peptide interactions and hydration, in conjunction with secondary phenomena, critically governs the course of this biphasic amyloid assembly. We show that at mildly acidic pH, typical of melanosomes, highly amyloidogenic oligomeric units assemble into metastable, dendritic, fractal networks following the forward Hofmeister series. However, the subsequent condensation of fractal networks via conformational maturation into amyloid fibrils follows an inverse Hofmeister series due to fragmentation events coupled with secondary nucleation processes. Our results indicate that ions exert a strong influence on the aggregation kinetics as well as on the nanoscale morphology and also modulate the autocatalytic amplification processes during amyloid assembly via an intriguing dual Hofmeister effect. This unique interplay of molecular drivers will be of prime importance in delineating the aggregation pathways of a multitude of intrinsically disordered proteins involved in physiology and disease.


Assuntos
Amiloide/genética , Proteínas Amiloidogênicas/genética , Amiloidose/genética , Antígeno gp100 de Melanoma/genética , Amiloide/química , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Amiloidose/patologia , Humanos , Concentração de Íons de Hidrogênio , Proteínas Intrinsicamente Desordenadas , Íons , Cinética , Melaninas/biossíntese , Melanossomas/genética , Melanossomas/imunologia , Agregados Proteicos/genética , Antígeno gp100 de Melanoma/metabolismo
10.
Anim Genet ; 51(6): 935-939, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33058316

RESUMO

The study of skin color in cattle holds both economic and scientific interest. Several ocular diseases of cattle have been associated with low pigmentation of the eyelids, including ocular squamous cell carcinoma and infectious keratoconjunctivitis, the two most common ocular diseases affecting cattle production. Although low eyelid pigmentation is a well-known risk factor for various ocular diseases, the genetic and biological basis of this relationship is largely unknown. We investigated the transcriptome of eyelid skin in Hereford cattle using RNA-sequencing technology. Two contrasting groups were evaluated: steers that were completely pigmented and steers with no pigmentation in both eyelids. Most of the up-regulated genes in pigmented samples are directly implicated in melanogenesis and melanosome development, whereas up-regulated genes in non-pigmented samples are implicated in cancer development and the immune system, among other functions. Interestingly, network analysis comparing pigmented vs. non-pigmented samples revealed significant differences in the co-expression patterns of genes related to melanosome, pigmentation and defense response to bacteria, showing higher gene activity, greater co-expression patterns and tighter co-regulation mechanisms in pigmented samples. Overall, our findings indicate that bovine eyelid pigmentation depends on the expression of many genes involved not only in pigmentation and melanosome function but also related to inflammatory response, infection and tumoral pathways.


Assuntos
Bovinos/genética , Pálpebras , Pigmentação/genética , Transcriptoma , Animais , Cruzamento , Oftalmopatias/genética , Oftalmopatias/veterinária , Expressão Gênica , Masculino , Melaninas/biossíntese , Melanossomas/genética , Fenótipo
11.
Proc Natl Acad Sci U S A ; 117(37): 22671-22673, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868414

RESUMO

An epidemiological connection exists between Parkinson's disease (PD) and melanoma. α-Synuclein (α-syn), the hallmark pathological amyloid observed in PD, is also elevated in melanoma, where its expression is inversely correlated with melanin content. We present a hypothesis that there is an amyloid link between α-syn and Pmel17 (premelanosomal protein), a functional amyloid that promotes melanogenesis. Using SK-MEL 28 human melanoma cells, we show that endogenous α-syn is present in melanosomes, the organelle where melanin polymerization occurs. Using in vitro cross-seeding experiments, we show that α-syn fibrils stimulate the aggregation of a Pmel17 fragment constituting the repeat domain (RPT), an amyloidogenic domain essential for fibril formation in melanosomes. The cross-seeded fibrils exhibited α-syn-like ultrastructural features that could be faithfully propagated over multiple generations. This cross-seeding was unidirectional, as RPT fibrils did not influence α-syn aggregation. These results support our hypothesis that α-syn, a pathogenic amyloid, modulates Pmel17 aggregation in the melanosome, defining a molecular link between PD and melanoma.


Assuntos
Melanoma/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Antígeno gp100 de Melanoma/metabolismo , Linhagem Celular Tumoral , Humanos , Melanoma/genética , Melanossomas/química , Melanossomas/genética , Melanossomas/metabolismo , Doença de Parkinson/genética , Agregados Proteicos , Domínios Proteicos , alfa-Sinucleína/química , alfa-Sinucleína/genética , Antígeno gp100 de Melanoma/química , Antígeno gp100 de Melanoma/genética
12.
Genes (Basel) ; 11(7)2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668786

RESUMO

The premelanosome protein (PMEL) is important for fibril formation within melanosomes during vertebrate melanogenesis. Fibrils form a matrix for pigment deposition within pigmented tissues such as skin and hair. PMEL mutations are known to modulate eumelanic pigmentation in vertebrates. However, in bovines, PMEL mutations were also found to alter pheomelanic pigmentation resulting in coat color dilution. Furthermore, epistatic effects of a mutated PMEL allele were detected in the phenotypic expression of the bovine hair defect "rat-tail syndrome" (RTS) characterized by charcoal coat color and hair deformation. Reports about PMEL gene expression in non-pigmented tissues raised the hypothesis that there may be unknown functions of the PMEL protein beyond eumelanin deposition to PMEL fibrils. In our study, we analysed the PMEL protein expression in pigmented skin and non-pigmented bovine tissues (non-pigmented skin, thyroid gland, rumen, liver, kidney, and adrenal gland cortex). We found that a processed form of the bovine PMEL protein is expressed in pigmented as well as in non-pigmented tissues, which is in line with gene expression data from targeted RT-PCR and whole transcriptome RNAseq analysis. The PMEL protein is located in membranes and within the cytosol of epithelial cells. Based on our data from bovine tissues, we concluded that at least in cattle PMEL potentially has additional, yet unexplored functions, which might contribute to effects of PMEL mutations on pheomelanin coat color dilution and charcoal coat color in RTS animals. However, indication of PMEL protein in unpigmented cells and tissues will require further confirmation in the future, because there have been no confirmed reports before, which had detected bovine PMEL protein with specific antibodies either in pigmented or unpigmented tissue.


Assuntos
Melaninas/genética , Melanossomas/genética , Pigmentação da Pele/genética , Antígeno gp100 de Melanoma/genética , Alelos , Animais , Bovinos , Regulação da Expressão Gênica/genética , Humanos , Melaninas/biossíntese , Melanócitos/metabolismo , Mutação/genética , Fenótipo , Sequenciamento do Exoma
13.
Genes (Basel) ; 11(6)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526956

RESUMO

Brown or chocolate coat color in many mammalian species is frequently due to variants at the B locus or TYRP1 gene. In dogs, five different TYRP1 loss-of-function alleles have been described, which explain the vast majority of dogs with brown coat color. Recently, breeders and genetic testing laboratories identified brown French Bulldogs that did not carry any of the known mutant TYRP1 alleles. We sequenced the genome of a TYRP1+/+ brown French Bulldog and compared the data to 655 other canine genomes. A search for private variants revealed a nonsense variant in HPS3, c.2420G>A or p.(Trp807*). The brown dog was homozygous for the mutant allele at this variant. The HPS3 gene encodes a protein required for the correct biogenesis of lysosome-related organelles, including melanosomes. Variants in the human HPS3 gene cause Hermansky-Pudlak syndrome 3, which involves a mild form of oculocutaneous albinism and prolonged bleeding time. A variant in the murine Hps3 gene causes brown coat color in the cocoa mouse mutant. We genotyped a cohort of 373 French Bulldogs and found a strong association of the homozygous mutant HPS3 genotype with the brown coat color. The genotype-phenotype association and the comprehensive knowledge on HPS3 function from other species strongly suggests that HPS3:c.2420G>A is the causative variant for the observed brown coat color in French Bulldogs. In order to clearly distinguish HPS3-related from the TYRP1-related brown coat color, and in line with the murine nomenclature, we propose to designate this dog phenotype as "cocoa", and the mutant allele as HPS3co.


Assuntos
Cor de Cabelo/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glicoproteínas de Membrana/genética , Oxirredutases/genética , Pigmentação/genética , Alelos , Animais , Códon sem Sentido/genética , Cães , Estudos de Associação Genética , Genótipo , Humanos , Melanossomas/genética , Camundongos , Fenótipo
14.
Cell Struct Funct ; 45(1): 45-55, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32037382

RESUMO

Keratinocytes uptake melanosomes from melanocytes and retain them in the perinuclear region, where they form melanin caps. Although these processes are crucial to protecting nuclear DNA against ultraviolet injury, the molecular basis of melanosome uptake and decomposition in keratinocytes is poorly understood. One of the major reasons for its being poorly understood is the lack of a specific marker protein that can be used to visualize or monitor melanosomes (or melanosome-containing compartments) that have been incorporated into keratinocytes. In this study, we performed a comprehensive localization screening for mammalian Rab family small GTPases (Rab1-45) and succeeded in identifying 11 Rabs that were enriched around melanosomes that had been incorporated into keratinocytes. We also established a new assay by using a recently developed melanosome probe (called M-INK) as a means of quantitatively assessing the degradation of proteins on incorporated melanosomes in control and each of a series of Rab-knockdown keratinocytes. The results showed that knockdown or CRISPR/Cas9-mediated knockout of Rab7B (also identified as Rab42) in keratinocytes caused strong inhibition of protein degradation on melanosomes. Our findings indicated that Rab7B/42 is recruited to melanosome-containing compartments and that it promotes protein degradation on melanosomes in keratinocytes.Key words: degradation, keratinocytes, melanocytes, melanosome, Rab small GTPase.


Assuntos
Queratinócitos/metabolismo , Melaninas/metabolismo , Melanossomas/genética , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Transporte Biológico/fisiologia , Melanócitos/metabolismo , Melanossomas/metabolismo , Camundongos , Proteólise
15.
Sci Rep ; 9(1): 3793, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846767

RESUMO

Mutations in KCNJ13 are associated with two retinal disorders; Leber congenital amaurosis (LCA) and snowflake vitreoretinal degeneration (SVD). We examined the retina of kcnj13 mutant zebrafish (obelixtd15, c.502T > C p.[Phe168Leu]) to provide new insights into the pathophysiology underlying these conditions. Detailed phenotyping of obelixtd15 fish revealed a late onset retinal degeneration at 12 months. Electron microscopy of the obelixtd15 retinal pigment epithelium (RPE) uncovered reduced phagosome clearance and increased mitochondrial number and size prior any signs of retinal degeneration. Melanosome distribution was also affected in dark-adapted 12-month obelixtd15 fish. At 6 and 12 months, ATP levels were found to be reduced along with increased expression of glial fibrillary acidic protein and heat shock protein 60. Quantitative RT-PCR of polg2, fis1, opa1, sod1/2 and bcl2a from isolated retina showed expression changes consistent with altered mitochondrial activity and retinal stress. We propose that the retinal disease in this model is primarily a failure of phagosome physiology with a secondary mitochondrial dysfunction. Our findings suggest that alterations in the RPE and photoreceptor cellular organelles may contribute to KCNJ13-related retinal degeneration and provide a therapeutic target.


Assuntos
Mitocôndrias/metabolismo , Fagossomos/patologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/patologia , Animais , Melanossomas/genética , Melanossomas/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Retina/diagnóstico por imagem , Retina/patologia , Retina/ultraestrutura , Degeneração Retiniana/patologia , Tomografia de Coerência Óptica , Peixe-Zebra/genética
16.
Int J Cancer ; 144(12): 3070-3085, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30556600

RESUMO

Despite recent advances in targeted and immune-based therapies, advanced stage melanoma remains a clinical challenge with a poor prognosis. Understanding the genes and cellular processes that drive progression and metastasis is critical for identifying new therapeutic strategies. Here, we found that the GTPase RAB27A was overexpressed in a subset of melanomas, which correlated with poor patient survival. Loss of RAB27A expression in melanoma cell lines inhibited 3D spheroid invasion and cell motility in vitro, and spontaneous metastasis in vivo. The reduced invasion phenotype was rescued by RAB27A-replete exosomes, but not RAB27A-knockdown exosomes, indicating that RAB27A is responsible for the generation of pro-invasive exosomes. Furthermore, while RAB27A loss did not alter the number of exosomes secreted, it did change exosome size and altered the composition and abundance of exosomal proteins, some of which are known to regulate cancer cell movement. Our data suggest that RAB27A promotes the biogenesis of a distinct pro-invasive exosome population. These findings support RAB27A as a key cancer regulator, as well as a potential prognostic marker and therapeutic target in melanoma.


Assuntos
Exossomos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Proteínas rab27 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Meios de Cultivo Condicionados , Exossomos/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Melanoma/genética , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanossomas/genética , Melanossomas/metabolismo , Camundongos , Invasividade Neoplásica , Nevo/genética , Nevo/metabolismo , Proteômica , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Esferoides Celulares , Proteínas rab27 de Ligação ao GTP/biossíntese , Proteínas rab27 de Ligação ao GTP/genética
17.
Hum Mol Genet ; 28(8): 1298-1311, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30561643

RESUMO

Pigmentary glaucoma (PG) is a common glaucoma subtype that results from release of pigment from the iris, called pigment dispersion syndrome (PDS), and its deposition throughout the anterior chamber of the eye. Although PG has a substantial heritable component, no causative genes have yet been identified. We used whole exome sequencing of two independent pedigrees to identify two premelanosome protein (PMEL) variants associated with heritable PDS/PG. PMEL encodes a key component of the melanosome, the organelle essential for melanin synthesis, storage and transport. Targeted screening of PMEL in three independent cohorts (n = 394) identified seven additional PDS/PG-associated non-synonymous variants. Five of the nine variants exhibited defective processing of the PMEL protein. In addition, analysis of PDS/PG-associated PMEL variants expressed in HeLa cells revealed structural changes to pseudomelanosomes indicating altered amyloid fibril formation in five of the nine variants. Introduction of 11-base pair deletions to the homologous pmela in zebrafish by the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 method caused profound pigmentation defects and enlarged anterior segments in the eye, further supporting PMEL's role in ocular pigmentation and function. Taken together, these data support a model in which missense PMEL variants represent dominant negative mutations that impair the ability of PMEL to form functional amyloid fibrils. While PMEL mutations have previously been shown to cause pigmentation and ocular defects in animals, this research is the first report of mutations in PMEL causing human disease.


Assuntos
Glaucoma de Ângulo Aberto/genética , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/fisiologia , Adulto , Amiloide/metabolismo , Animais , Feminino , Células HeLa , Humanos , Iris/metabolismo , Masculino , Melanossomas/genética , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Linhagem , Pigmentação/genética , Sequenciamento do Exoma/métodos , Adulto Jovem , Peixe-Zebra
18.
Pigment Cell Melanoma Res ; 32(3): 381-390, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30457703

RESUMO

The chocolate plumage color in chickens is due to a sex-linked recessive mutation, choc, which dilutes eumelanin pigmentation. Because TYRP1 is sex-linked in chickens, and TYRP1 mutations determine brown coat color in mammals, TYRP1 appeared as the obvious candidate gene for the choc mutation. By combining gene mapping with gene capture, a complete association was identified between the chocolate phenotype and a missense mutation leading to a His214Asn change in the ZnA zinc-binding domain of the protein. A diagnostic test confirmed complete association by screening 428 non-chocolate chickens of various origins. This is the first TYRP1 mutation described in the chicken. Electron microscopy analysis showed that melanosomes were more numerous in feather follicles of chocolate chickens but exhibited an abnormal structure characterized by a granular content and an irregular shape. A similar altered morphology was observed on melanosomes of another TYRP1 mutant in birds, the roux mutation of the quail.


Assuntos
Cor de Cabelo/genética , Melanossomas/patologia , Mutação de Sentido Incorreto , Oxirredutases/genética , Transtornos da Pigmentação/patologia , Pigmentação/genética , Animais , Sequência de Bases , Galinhas , Feminino , Masculino , Melanossomas/genética , Fenótipo , Transtornos da Pigmentação/genética , Homologia de Sequência
19.
Physiol Rev ; 99(1): 1-19, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30255724

RESUMO

Melanosomes are organelles that produce and store melanin, a widespread biological pigment with a unique suite of properties including high refractive index, semiconducting capabilities, material stiffness, and high fossilization potential. They are involved in numerous critical biological functions in organisms across the tree of life. Individual components such as melanin chemistry and melanosome development have recently been addressed, but a broad synthesis is needed. Here, we review the hierarchical structure, development, functions, and evolution of melanosomes. We highlight variation in melanin chemistry and melanosome morphology and how these may relate to function. For example, we review what is known of the chemical differences between different melanin types (eumelanin, pheomelanin, allomelanin) and whether/how melanosome morphology relates to chemistry and color. We integrate the distribution of melanin across living organisms with what is known from the fossil record and produce hypotheses on its evolution. We suggest that melanin was present in life forms early in evolutionary history and that melanosomes evolved at the origin of organelles. Throughout, we discuss the (sometimes gaping) holes in our knowledge and suggest areas that need particular attention as we move forward in our understanding of these still-mysterious organelles and the materials that they contain.


Assuntos
Evolução Biológica , Melaninas/genética , Melanossomas/genética , Estrutura Molecular , Animais , Humanos
20.
Proc Natl Acad Sci U S A ; 115(33): E7728-E7737, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061422

RESUMO

UV-induced cell pigmentation represents an important mechanism against skin cancers. Sun-exposed skin secretes α-MSH, which induces the lineage-specific transcriptional factor MITF and activates melanogenesis in melanocytes. Here, we show that the autophagic tumor suppressor UVRAG plays an integral role in melanogenesis by interaction with the biogenesis of lysosome-related organelles complex 1 (BLOC-1). This interaction is required for BLOC-1 stability and for BLOC-1-mediated cargo sorting and delivery to melanosomes. Absence of UVRAG dispersed BLOC-1 distribution and activity, resulting in impaired melanogenesis in vitro and defective melanocyte development in zebrafish in vivo. Furthermore, our results establish UVRAG as an important effector for melanocytes' response to α-MSH signaling as a direct target of MITF and reveal the molecular basis underlying the association between oncogenic BRAF and compromised UV protection in melanoma.


Assuntos
Melaninas/biossíntese , Melanossomas/metabolismo , Pigmentação da Pele/efeitos da radiação , Proteínas Supressoras de Tumor/metabolismo , Raios Ultravioleta , Animais , Células HEK293 , Humanos , Melaninas/genética , Melanoma/genética , Melanoma/metabolismo , Melanossomas/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Supressoras de Tumor/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...